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ABSTRACT

This paper presents a data-driven approach to predict the steady-state response
utilizing information from the transient data. The aeroelastic system investigated
is a two degree-of-freedom airfoil oscillating in pitch and plunge. First the method
identifies the specific type of the structural nonlinearity. Appropriate state-space
formulations are then proposed to model aeroelastic systems with continuous or
piece-wise linear structural nonlinearity. The Kalman filter and the expectation
maximization algorithm are employed to estimate the system parameters, and the
steady-state behavior is then predicted from the reconstructed state-space model.
Results using experimental data and numerically simulated data for an aeroelas-
tic system with freeplay and polynomial spring are reported to demonstrate the
performance of the proposed method.

NOMENCLATURE

α pitch angle
ξ non-dimensional plunge displacement
M0 preload
δ freeplay
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αf beginning of the freeplay
xα non-dimensional distance from elastic axis to centre of mass
U∗ non-dimensional velocity
ζα, ζξ viscous damping ratios in pitch and plunge
rα radius of gyration about elastic axis
µ airfoil/ air mass ratio
| · | the absolute value of a complex number
t non-dimensional time
K(·) Kernel function
E[·] expected value
E[·|·] conditional expectation
N number of observations
hN bandwidth parameter

Superscript
′ first order time derivative
′′ second order time derivative
t transpose of a vector or matrix

1 INTRODUCTION

Prediction of aeroelastic behavior has been a subject of research for many years.
For obvious reasons related to flight safety, it is important to develop methods
which are capable of forecasting the steady-state behavior of aircraft structures or
control surfaces. Knowing the possibility of encountering divergent flutter, limit-
cycle oscillations, or chaotic behavior before they occur can help to prevent catas-
trophic consequences due to structural failure.

In this paper, we consider a two-degree-of-freedom (DOF) aeroelastic system
which simulates an oscillating airfoil in pitch and plunge. In general, nonlinearity
arises either from the aerodynamics or from the structure. If the flow is in the
low speed regime, linear aerodynamics can be assumed. Thus, the only source of
nonlinearity is due to the structure which may occur in the restoring forces and
can be classified as a continuous type, for example, polynomial springs, or piece-
wise linear type such as freeplay and hysteresis. The distinct characteristics of
the freeplay or hysteresis is the existence of the switching points. Even though a
system of nonlinear differential equations is generally used to model a nonlinear
aeroelastic system, the mathematical formulation can be rewritten as a set of linear
systems for aeroelastic models with piece-wise linear structures.

Traditional methods in the study of nonlinear aeroelasticity include experi-
mental investigations, numerical simulations and various mathematical techniques
([4],[5],[10],[12]). In recent years, there has been a growing interest in developing
data-driven procedures from aeroelastic data. In our earlier study ([25],[24],[16]),
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we proposed an expert data mining system for aeroelastic predictions. Using lim-
ited transient data as input, artificial neural networks and nonlinear time series
models were developed to predict the asymptotic state of the aeroelastic systems.
Even though these techniques have been tested on the simulated data and experi-
mental data, it is not easy to justify the success in using neural networks, and it is
also a difficult task in searching a suitable nonlinear model to fit aeroelastic data in
using a time series approach. To develop a reliable data-driven predictor in aeroe-
lasticity applications, we present another approach in this paper. The proposed
method utilizes a system identification technique which has been applied to solve
a wide range of engineering problems. The important feature of the present ap-
proach is that the specific type of the structural nonlinearity is first identified from
the transient data. Appropriate mathematical formulations are then constructed to
model aeroelastic systems with continuous or piece-wise linear structures. Once
a model is chosen, the associated system parameters are estimated by iterative pa-
rameter estimation procedures such as the Kalman filtering and the expectation -
maximization algorithm [17]. Consequently, we can forecast the steady-state re-
sponse from the reconstructed aeroelastic model.

2 AEROELASTIC MODEL

Consider a two degree-of-freedom (DOF) aeroelastic system which simulates an
oscillating airfoil in pitch and plunge. Mathematically, the model with subsonic
aerodynamics can be described by the following system of equations:

ξ
′′

+ xαα
′′

+ 2ζξ
ω̃

U∗ ξ
′
+

(
ω̃

U∗

)2

G(ξ) = − 1
πµ

CL(t) (1)

xα

r2
α

ξ
′′

+ α
′′

+ 2
ζα

U∗α
′
+

1
U∗2 M(α) =

2
πµr2

α

CM (t), (2)

wherexα, rα, ζα, ζξ, ω̃, U∗, µ are the airfoil parameters, and they are defined in
Ref. [10]. HereG(ξ) andM(α) are the nonlinear plunge and pitch stiffness terms,
respectively.CL(t), CM (t) are the lift and pitching moment coefficients. For an
incompressible flow,CL(t) andCM (t) can be expressed by the integral terms as
shown in Ref. [10].

In the current study, we consider the structural nonlinearity is imposed only in
the pitch DOF, and it can be taken as one of the following types.

Polynomial spring:

M(x) = anxn + . . . + a1x + a0. (3)
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Figure 1: General sketches for the structural nonlinearities (a) polynomial spring (b) freeplay (c)
hysteresis

Freeplay:

M(x) =





x− αf if x < αf

0 if αf ≤ x ≤ αf + δ

x− αf − δ if x > αf + δ.

(4)

Hysteresis:

M(x) =





x− αf + M0 if x < αf ↑
x + αf −M0 if x > −αf ↓
M0 if αf ≤ x ≤ αf + δ ↑
−M0 if − αf − δ ≤ x ≤ −αf ↓
x− αf − δ + M0 if x > αf + δ ↑
x + αf + δ −M0 if x < −αf − δ ↓ .

(5)

Here,↑ and↓ denote the motion in increasing or decreasingx− direction. The
general sketches for the structural nonlinearities are shown in Fig. 1.

By introducing four new variablesω1, ω2, ω3, ω4, the integro-differential sys-
tem (1) - (2) can be rewritten as an 8-DOF system of ordinary differential equa-
tions:

X
′
t = AXt + F (Xt), (6)

whereA is a matrix containing the system coefficients,F is a non-linear func-
tion, andX = [α, α

′
, ξ, ξ

′
, ω1, ω2, ω3, ω4]t. The complete system can be found

in Ref. [10]. The coefficients inF are zero except for the second row which is
due to the non-zero coefficientsakx

k for k > 1 in the polynomial spring in the
pitch DOF. For a structural nonlinearity represented by a piece-wise linear type,
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the aeroelastic model can be expressed by a set of linear systems. For example,
for a freeplay model, there exists two switching points. If the freeplay parameters
αf andδ are known, the corresponding aeroelastic model can be divided into three
regions in which each region is governed by a linear system. The corresponding
aeroelastic model can be written as





X
′
t = AXt + F1 if Xt(1) < αf ,

X
′
t = BXt + F2 if αf ≤ Xt(1) ≤ αf + δ,

X
′
t = AXt + F3 if Xt(1) > αf + δ,

(7)

whereX(1) = α is the first component of the 8-DOF vectorX. Here,A andB are
8× 8 matrices, andFi, i = 1, 2, 3 are eight-dimensional vectors. Although the pa-
per is focused on the structural nonlinearity represented by polynomial spring and
freeplay, the techniques discussed here can be extended directly to the hysteresis
case.

In the present aeroelastic model, the two physical variables are given by the
pitch angle and plunge displacement. Suppose limited aeroelastic transient data are
known, the goal of this paper is to describe a data-driven tool utilizing the system
identification technique to forecast the steady-state response of the aeroelastic sys-
tem. In general, identification techniques for linear time invariant systems are well
developed. Efficient software such as the MATLAB system identification tool box
is available for problems in engineering applications. However, non-linear system
identification techniques are less advanced than those for the linear systems, and
selecting an appropriate mathematical model that provides a true representation of
the physical system is often a difficult task.

In developing a data-driven method, we start with a time series of measured
data. In Fig. 2, samples of transient aeroelastic data are displayed. Due to the
space constraint, only one of the time-histories of either the pitch angle or the
plunge displacement is shown. However, in actual applications, both the pitch and
plunge data are employed. The time series illustrated in Fig. 2 have not reached
the steady-state, and they are generated by experiments or numerical simulations.
Fig. 2a is from experiment for an aeroelastic model with a polynomial spring, 2b
and 2c are from experiments with a freeplay, and 2d is from numerical simula-
tion for a freeplay. Obviously, it is difficult to forecast the steady-state response
based on the limited data. In each case, the long-term behavior could be a limit-
cycle-oscillation, non-oscillating fixed-point solution, divergent, or even a chaotic
motion.

In Section 3, we first describe statistical techniques which are capable of identi-
fying the specific type of the structural nonlinearity from the limited data. Knowing
that the data is arising from aeroelastic systems with continuous or piece-wise lin-
ear structures enables us to construct an appropriate mathematical model which
exhibits a nonlinear response consistent with the known transient data. The un-
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Figure 2: Samples of input pitch data for data-driven method

known parameters in the developed model are estimated by the Kalman filter and
the expectation maximization algorithm, and this is reported in Section 4. Finally,
Section 5 presents several case studies which serve to validate the capability of the
proposed data-driven method.

3 STRUCTURAL NONLINEARITY IDENTIFICATION

Spectral analysis has been used to detect nonlinearity in a wide range of problems
in science and engineering. For example, estimated bispectral have been used to
study non-linear transfer of energy in turbulence [11, 23], in plasma physics[9],
and investigation of quadratic coupling between the frequencies associated with
the dynamics of a nonlinear mechanical system [7]. Higher order spectral meth-
ods have been applied to simulated aeroelastic data with polynomial structural
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non-linearities [21], wind-tunnel data [6], and flight test data [20]. Moreover, the
trispectrum [3] was employed to identify the aeroelastic cubic non-linearities.

Consider{X(n)}, n = 1 . . . , N , as a stationary time series with meanE[X(n)]
= 0, otherwise we work with the mean deleted series. The bispectrum of{X(n)}
is a two-dimensional Fourier transform of the third-moment functionC(n,m) =
E[X(k + n)X(k + m)X(k))]:

B(ω1, ω2) =
∑
m

∑
n

C(n,m)exp{−2πiω1n− 2πiω2m}. (8)

The bicoherence is the normalized bispectrum:

b(ω1, ω2) =
|B(ω1, ω2)|√

B(ω1)B(ω2)B(ω1 + ω2)
. (9)

Since the bispectrum is a spatially periodic function, its values in the plane are
completely determined by the values in the principal domain{(ω1, ω2) : 0 < ω1 <
0.5, ω2 < ω1, 2ω1 + ω2 < 1}. A detailed theoretical study of higher order spectra
is presented in Ref. [2].

It has been well recognized that the bispectrum and the bicoherence of a Gaus-
sian signal are identically zero, and a large magnitude of the bispectrum indicates
a quadratic coupling or a nonlinear interaction among different frequency com-
ponents of a signal. Hence, by inspecting the bispectrum plots resulting from
aeroelastic data, we can confirm the structural nonlinearity from the presence of
large spectral amplitudes shown in the bispectrum plots. However, the bispectrum
and bicoherence can not distinguish whether the nonlinearity is of the continuous
or piece-wise linear type. To identify a specific structural nonlinearity such as
polynomial spring, freeplay or hysteresis, we consider a non-parametric statistical
method.

The self-exciting threshold auto-regressive (SETAR) is a nonlinear statistical
model which was first proposed by Tong [22]. The SETAR is a piece-wise linear
process in which a time series is divided into j regimes according to j-1 thresh-
olds. In each regime, a different auto-regressive model is applied. Let{t0, t1,
. . . , tl} denote the thresholds, i.e., a linearly ordered subset of real numbers, such
that t0 < t1 < . . . < tl, wheret0 = −∞ andtl = +∞. A self-exciting thresh-
old autoregressive model of order(l; p, . . . , p) or SETAR(l; p, . . . , p) wherep is
repeatedl times, is a uni-variate time series{Xn} of the form

Xn = a
(j)
0 +

p∑

i=1

a
(j)
i Xn−i + en, tj−1 < Xn−d ≤ tj , (10)

for j = 1, 2, . . . l, whered is a fixed integer belonging to{ 1, 2, . . . , p}, and{en}
is a Gaussian, independent, identically distributed white noise sequence. If for
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j = 1, 2, . . . , l, we havea(j)
i = 0 for i = pj +1, pj +2, . . . , p, then{Xn} is known

as a SETAR(l; p1, p2, . . . , pl) model. Hence, a SETAR(1, p) model is equivalent
to a linear autoregressive (AR) model of orderp.

Let us define the vectorYn = (Xn, . . . , Xn−p+1)
t, then a SETAR(l; p, p,

. . . , p) model can be rewritten in a discrete state-space form:

Yn = f(Yn−1) + En, (11)

whereEn = (en, 0, . . . , 0)t, f(Yn−1) = (h(Yn−1), Xn−1, . . . , Xn−p+1)
t, and

h(Yn−1) is given in the right side of the Eq. (10).
The key task in the SETAR models is to determine the thresholds and the delay

parameterd, and this can be achieved by carrying out a non-parametric lag regres-
sion estimationmj(x) = E[Xn| Xn+j ]. Let hN denote the bandwidth parameter,
and letK(·) be a kernel function which is usually a continuous probability density
function:K(u) ≥ 0 and

∫
K(u)du = 1. A non-parametric kernel estimatêmj(x)

for mj(x) can be expressed by

m̂j(x) =
N∑

i=−j+1

XiKN (x−Xi+j)/
N∑

i=−j+1

KN (x−Xi+j), (12)

for j = −s, . . . ,−1, wheres is a positive integer much smaller than the sizeN of
the data set. A simple kernel function is given by the triangular kernel [22] where

KN (u) =

{
(1− |u|/hN )/hN if |u| ≤ hN

0 otherwise.
(13)

The choice of the kernel is not critical in practical implementations, and other types
such as the Epanechnikov kernel or the Gaussian kernel can also be employed. It
is worth mentioning that similar formula can be developed for the non-parametric
estimateŝvj(x) of the variancevj(x) = V AR(Xn| Xn+j). Hence, by analyzing
the plots ofm̂j(x) and v̂j(x) for various values ofj, the values of the thresholds
and the delay parameter can be estimated.

Now, recall that for an aeroelastic system with a piece-wise linear structure
such as freeplay, the aeroelastic model can be expressed as a system of linear equa-
tions given in Eq. (7). Using a sufficiently small sampling stepτ , the following
state-space formulation is resulted:

Xt+τ = A1(τ)Xt + b1(τ) if Xt(1) < αf ,

Xt+τ = A2(τ)Xt + b2(τ) if αf ≤ Xt(1) ≤ αf + δ,

Xt+τ = A3(τ)Xt + b3(τ) if Xt(1) > αf .

(14)

Here,Ai, i = 1, 2, 3 are8 × 8 matrices,A3 = A1, andbi, i = 1, 2, 3 are eight-
dimensional vectors. It is then clear that there are many common features among
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the state-space formulations arising from the SETAR model and the freeplay model.
In particularly, both models exhibit the piece-wise linear characteristic, in which
the changes depend on the values of the thresholds and delay parameters in SETAR
and on the switching points in freeplay. Hence, to distinguish the structural nonlin-
earities associated with a continuous type such as polynomial spring, or piece-wise
linear cases such as freeplay or hysteresis from given aeroelastic data, we can apply
a non-parametric estimation. By confirming the existence of the switching points,
we can identify the specific type of the structural nonlinearity.

4 ESTIMATION OF SYSTEM PARAMETERS

Once a mathematical model is determined, the remaining task is to estimate the as-
sociated system parameters using the information from the known measured data.
For example, for a freeplay model given in Eq. (14), if the matrix coefficientsAi

and the vectorbi are known, the nonlinear behavior of the aeroelastic system can
be predicted from the reconstructed freeplay model.

Let us consider the state-space form of a general nonlinear discrete system

xk+1 = f [xk, uk+1] + vk+1,

yk+1 = h[xk+1, uk+1] + wk+1.
(15)

Heref [·, ·] is the process model,xk is the state of the system at thek-time step,
uk is the input vector,yk is the observation vector,h[·, ·] is the observation model,
vk is the noise process andwk is the additive measurement noise. We assume
that the noise vectors,vk andwk, are Gaussian and from uncorrelated white se-
quences:E[vk] = E[wk] = 0, for all k, andE[viv

t
j ] = δijQi, E[wiw

t
j ] = δijRi,

E[viw
t
j ] = 0, for all i, j, whereδij is the Kronecker symbol. We use the notations

x̄i = E[xi|y1, . . . , yi] and x̂i+1 = E[xi+1|y1, y2, . . . , yi] for the filtered and the
predicted values, respectively. The corresponding conditional covariances areP̄i =
E

[
(xi − x̄i)(xi − x̄i)t|y1, . . . , yi

]
andP̂i+1 = E

[
(xi+1 − x̂i+1)(xi+1 − x̂i+1)t |

y1, . . . , yi]. The classical Kalman update equations ([1], Chapter 4) at timek + 1
are given by

x̄k+1 = x̂k+1 + Gk+1νk+1,

P̄k+1 = P̂k+1 −Gk+1P̂νk+1νk+1
Gt

k+1.

Here, νk+1 = yk+1 − ŷk+1 is the innovation,P̂νk+1νk+1
is the conditional

covariance andGk+1 = P̂xk+1yk+1
P̂−1

νk+1νk+1
is the Kalman gain. To calculate

these quantities both the extended Kalman filter (EKF) and the unscented filter
(UF) [8] approximate the state distribution with a Gaussian one. However, instead
of using the EKF linearization approach, the UF employs a deterministic sampling.
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The sample points completely capture the true mean and the true covariance. In
contrast to the first-order accuracy of the EKF, the UF is capable of accurately
capturing the true posterior mean and the covariance up to the third order for a
nonlinear system. Moreover, the UF is computationally more attractive, it does not
require the calculations of the Jacobians, and it can apply to aeroelastic systems
with structural nonlinearities given by freeplay and hysteresis models.

The expectation maximization (EM) algorithm [14] is a popular engineering
tool for estimation of parameters [19]. The EM algorithm is particularly useful
when it is straightforward to compute the likelihood of the model using not only
the observed dataYobs, but also the hidden dataYhid. In the present study, although
the measured data are given by the pitch angle and the plunging displacement, the
aeroelastic model include their derivatives. The derivatives are regarded as the
hidden data. The EM algorithm is implemented by a data augmentation scheme,
such that the observed data are a mapping of the augmented dataYobs = M (Yaug),
whereYaug = {Yobs, Yhid}. The algorithm starts with an initial guessθ0 for the
unknown parameters and iteratively improve the estimationθ∗. At each iteration,
the EM algorithm consists of two steps: the expectation (E) step which computes
the expectation of the likelihood; and the maximization (M) step which computes
the updated estimations of the parameters by maximizing the results obtained in
the E step.

More precisely, using the current estimationθn of the parameters, the E-step
computes the conditional expectation of the augmented data log-likelihoodQ(θ|θn)
= E[log p(θ|Yaug)| Yobs, θn]. An approximation may be required during the E-step.
In order to justify the convergence, it is important to note that the negative of the
free-energy is maximized [14] with respect to the distribution component:

Qn+1 = arg max
Q
F(Q, θn), (16)

where

F(Q, θ) =
∫

Q(Yhid) log p(θ|Yaug)dYhid −
∫

Q(Yhid) log Q(Yhid)dYhid. (17)

The M-step performs maximization with respect to the parametersθ:

θn+1 = arg max
θ

Q(θ|θn). (18)

In term ofF , the M-step can be expressed as:

θn+1 = arg max
θ

F(Qn+1, θ). (19)

Hence, an approximation can be used either in the E-step or the M-step as long as
F is increasing.
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An important feature of the EM-algorithm for parameter estimation is the guar-
anteed of convergence ([26]), [14]). However, depending on the initial guess, the
algorithm may only converge to a local maximum.

Using the filtered values̄xi and P̄i, in the E step we calculate the smoothed
valuesxN

i = E[xi|y1, . . . , yN ], PN
i = E[(xi − xN

i )(xi − xN
i )t|y1, . . . , yN ], and

PN
i,i−1 = E[(xi − xN

i )(xi−1 − xN
i )t|y1, . . . , yN ]. In the M step, the smoothed

values are replaced in the formulas for updating the estimations of the parameters.
We now briefly describe the implementation of the EM algorithm for the aeroe-

lastic system given in Eqs. (1)-(2). For a freeplay model, the mathematical formu-
lation can be expressed by the set of linear systems given in Eq. (14). Since only
α and ξ are observed in practice, Eq. (14) can be rewritten as a linear discrete
switching state-space system:

{
xk+1 = ASk+1

xk + bSk+1
+ vk+1,

yk = Cxk + wk,
(20)

whereSk+1 is a discrete random variable given by

Sk+1 =





1 if xk(1) < αf ,

2 if αf ≤ xk(1) ≤ αf + δ,

3 if xk(1) > αf + δ,

(21)

where,Ai and bi, i = 1, 2, 3 are defined in Eq. (14),yk = [α, ξ]t is the two-
dimensional observation vector,xk = [α, α

′
, ξ, ξ

′
, ω1, ω2, ω3, ω4]tk is the eight-

dimensional state vector,vk ∼ N(0, QSk
) andwk ∼ N(0, R) are independent

Gaussian white noise vectors,Qi, i = 1, 2, 3 are8 × 8 matrices,R is a 2 × 2
matrix, andC is the2× 8 matrix

C =
[
1 0 0 . . . 0
0 1 0 . . . 0

]
. (22)

Onceαf and δ are estimated using the non-parametric method presented in the
previous section, the values of the switching variableSk are known. Moreover,
we assume that whenS1 = i, we havex1 ∼ N(µi, Σi), for i = 1, 2, 3. Hence,
the unknown parameters of the previous model areΘ = {Ai, bi, Qi, R, µi, Σi,
i = 1, 2, 3}. The linear Kalman filter can be used to calculate the smoothed values
xn

i , Pn
i andPn

i,i−1. The details of the implementation of the EM algorithm, the
log-likelihood and the updating formulas are reported in [15].

It is worth noting that the complexity of the parameter estimation process de-
pends on the number of unknown parametersΘ. For a matrix of order eight, there
are 64 unknown coefficients to be estimated. However, inX = [α, α

′
, ξ, ξ

′
, ω1, ω2,

ω3, ω4]t, only the first four are physical variables, and the remaining four are intro-
duced to eliminate the integral formulations from the aerodynamic terms. Hence,
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for a two DOF aeroelastic system, it is reasonable to consider a reduced model
with X = [α, α

′
, ξ, ξ

′
]t. Using this model, the number of the unknown parameters

is greatly reduced. For a matrix of order four, 16 unknown coefficients need to be
determined. From the results to be presented in the case studies in section 5, it
is clear that the reduced system is as effective as the full model in predicting the
aeroelastic behavior.

Next, we present the EM algorithm for an aeroelastic system with a polynomial
restoring force given in pitch, where

M(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0. (23)

Consider a reduced system consisting of the pitch angle, plunge displacement and
their derivatives, and using a simple Euler integration scheme, the associated re-
duced discrete system can be expressed as:

xk+1 = Axk +
[
02×4

B

]
[x2

k(1), x3
k(1), x4

k(1), x5
k(1)]t +

[
02×1

b

]
+ vk+1,

yk+1 =
[
1 0 0 0
0 1 0 0

]
xk+1 + wk+1.

Herexk = [α, ξ, α
′
, ξ
′
]t is the state of the system at time stepk, andyk+1 = [α, ξ]t

is the observation vector. We assume that the white noise vectors,vk andwk, are
Gaussian and from uncorrelated white sequences. The4 × 4 matrix A, the2 × 4
matrixB, the two dimensional vectorb , and the two covarianceQ andR matrices
corresponding to the noise vectorsvk andwk represent the unknown parameters
Θ of the aeroelastic system. Once the parameters are estimated, we can predict
the future values ofxi, i = N + 1, N + 2, . . . , and consequently the steady-state
behavior of the aeroelastic model.

In estimating the parametersΘ using the EM algorithm, we first augment the
data with the hidden variablesxi, i = 1, . . . , N and then calculate the complete
log-likelihood:

log(L) = log P (x1, . . . , xN , y1, . . . , yN ) = log P (yN |yN−1, . . . , y1, xN , . . . , x1)
+ . . . + log P (y1|xN , . . . , x1) + log P (xN |xN−1, . . . , x1) + . . . + log P (x1).

Unlike the freeplay model, the present system has a nonlinear state equation. In
the E-step, the likelihood and the conditional expectation of the likelihoodÊ =
E[log(L)|y1, . . . , yN ] is approximated based on the linearization of the previous
system. The formulas are similar to those reported [19] in the linear case, but
we have to employ EKF or the UF to compute the conditional expectationsxN

n ,
variancesPN

n , and covariancesPN
n,n−1. In the M-step, analytical update equations

for the parametersΘ can be found by taking the derivatives with respect to the
parametersΘ in the formula forÊ [19].

Structural Nonlinearity Identification and 
Steady-State Behavior Prediction from Transient Aeroelastic Data 

6 - 12 RTO-MP-AVT-154 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



5 RESULTS AND DISCUSSIONS

In order to evaluate the effectiveness of the techniques presented in the previous
sections, we consider the following case studies in this section.

 
 
  

  (a)          (b)    (c) 

Figure 3: Bicoherence plots for aeroelastic data (a) polynomial spring (b) freeplay (c) hysteresis
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Figure 4: Estimated mean for aeroeelastic data with polynomial spring (a)j = −1 (b)j = −10
(c) j = −30

In Fig. 3, we present the bicoherence plots for three data sets ’a’, ’b’ and ’c’
representing the pitch motions. The data are similar to those displayed in Fig.2,
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Figure 5: Estimated means for experimental freeplay data: (a)j = −4 (b) j = −10 (c) j = −12

in which two sets ’a’ and ’b’ are resulted from experiments corresponding to an
aeroelastic model with polynomial spring and freeplay in pitch, and the remaining
set ’c’ is generated numerically from solving Eqs. (1)-(2) with a structural non-
linearity represented by a hysteresis in the pitch DOF. Notice that the bicoherence
plots share a common feature namely several large spectral peaks are observed.
Similar bicoherence plots are noted by using the corresponding data in the plunge
DOF. Hence, it is easy to conclude that these data exhibit nonlinearity. However,
we definitely can not identify which data set corresponds to an aeroelastic model
with polynomial spring, freeplay or hysteresis based on the information solely from
these plots.
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Figure 6: Non-parametric estimates (a) meanj = −18 (b) variancej = −1

Now, we demonstrate that by applying a nonparametric study with the same
data, we can identify the specific type of structural nonlinearity with confidence.
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In Figs. 4 - 6, we display the nonparametric estimates of the mean or the vari-
ance from the given aeroelastic data. The plots shown in Fig. 4 indicate that the
estimated means for various values ofj are well approximated by straight lines.
This in turns reveals that the data is associated with a continuous nonlinearity, such
as a polynomial spring in our case. Recall that the most distinct characteristics
in performing a nonparametric study is to identify the existence of the switching
points.

Fig. 5 illustrates the behavior of the estimated mean of a typical freeplay data
as the value ofj increases. Initially whenj = −4, the plot resembles a straight line
as those shown in Fig. 4 from a polynomial spring data. However, whenj = −10,
it will not be well approximated by a straight line, and whenj = −12, the max-
imum and minimum points are clearly visible. The extreme values confirm the
existence of the switching points. Since only two switching points are identified,
we conclude that the data is associate with a freeplay model. From the locations
of the extreme values, we could also estimate the freeplay parametersαf andδ. In
Fig. 6 (a), we show the estimated mean for another freeply data set withαf = 0.4
andδ = 0.25. The plot clearly shows the presence of two switching points. Fig.
6(b) reveals that the plot of the estimated variance contains three extreme values,
hence it can not represent a freeplay. In general, we expect four switching points in
a hysteresis as shown in Fig. 1. However, whenαf is zero, the two switch points
coincide at the same location. Hence, there are only three distinct locations for
the switching points. Here, the extreme values are located at -1, 0, and +1. The
data correspond in Fig.6(b) is indeed from an aeroelastic system with hysteresis.
The nonparametric estimation have been tested on many aeroelastic data, and it is
a reliable and robust procedure to distinguish the specific type of structural nonlin-
earity associated with an aeroelastic model. It is also worth mentioning that when
carrying out a nonparametric study, accurate conclusions can be reached using a
very limited transient data (typically less than 300 data points).

In Fig. 7, we show the convergence of the EM algorithm for estimation of sys-
tem parameters. From the plot of the log-likelihood versus the number of EM cy-
cles, we observe that after a rapid convergence at the beginning, the convergent rate
is then improving very slowly. This is a typical characteristics of the EM algorithm
[13] for all cases being investigated in this work. In practical implementations, the
EM algorithm is usually terminated when the improvement becomes small. For the
particular case shown in Fig. 7, it is sufficed to stop the EM algorithm after thirty
cycles.

In Fig. 8, results of steady state predictions using aeroelastic data are presented.
In each case, about 200 data points (as indicated by the two vertical lines in the
figure) are used to carry out the nonparametric study and parameter estimations.
To validate the proposed model and the reconstructed system, a small number of
data about 40 points are taken after the training set to compare the predicted value
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Figure 7: Convergence of the EM algorithm

and the known data. The discrepancy between these values provides a degree of
the confidence in the prediction for a long-term behavior. Large errors clearly
indicate the failure of the method. In the figures, the prediction is represented by
a dash line and the original pitch motion is given in a solid line. The results for
the corresponding plunge DOF are similar, and will be omitted. The time series
presented in Figs. 8a - 8c correspond to experimental data in which (a) and (b)
are from a freeplay model, and (c) is associated with a polynomial spring. The
experiment investigations were conducted at the McGill University and the Texas
A&M University. The results demonstrate the overall performance of the proposed
data-driven technique. The time history displayed in Fig. 8a and 8b correspond
to the same case, the amplitude of the pitch motion decreases initially, and then
follows by a period with almost a constant amplitude before reaching a fixed-point
value. Although the correct fixed-point response is forecasted in Fig. 8a, it occurs
early than the experiment data. Using a section of the data taken in the region with
almost a constant amplitude, excellent agreement is achieved as shown in Fig 8b.

We have carried out many test cases in which the steady-state behaviors include
limit-cycle-oscillation, fixed-point solution and divergent motion, and the predicted
responses are in good agreement with the original data [15]. Finally, to investigate
the limit of the developed data-driven tool, we consider a chaotic motion as shown
in Fig. 9. The time history is generated from a freeplay model and was previously
studied by Price, Alighambari and Lee [18]. In Fig. 10, we present the evolution
of the phase space. The chaotic motion is identified by the ”two-well potential”
phase-trajectory in theα - α

′
plane displayed in Fig. 10d. However, if we only

consider the first 600 data, the phase plot reveals only one-well potential structure
as shown in Fig. 10a. From the time history shown in Fig. 9, we notice a change
in the profile occurs aroundt = 600 − 700. Fig. 10b plots the phase-trajectory
with data taken fromt = 500 − 700, and it suggests the second-well is due to the
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Figure 8: Experimental and predicted aeroelastic response (a)- (b) freeplay (c) polynomial spring

segment of the time series fromt = 600− 700. In Fig. 10c, we display the phase
space for the last 500 data taken fromt = 500− 1000, and we can clearly see the
two-well potential is well developed.

It should be noted that although the predicted time history may not overlap with
the original data, but the characteristics of a chaotic motion can still be extracted
from the reconstructed phase-trajectory. We now compare the phase plots from
the numerical simulated data and those resulting from the prediction. Fig. 11a
shows the predicted phase-space fromt = 0 − 1000 using the first 200 data in
Fig. 9 as input for the nonparametric study and parameter estimations. The plot
is somewhat different with that shown in Fig. 10d, in particular, it shows a one-
well potential behavior rather that a two-well potential. However, Fig. 11a is in
a good agreement with the phase plot using the first 600 data from the original
time series shown in Fig 10a. As we have mentioned earlier that the pitch motion
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Figure 9: Simulated chaotic data
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Figure 10: Phase space for the chaotic data with t (a) 0-600 (b) 500-700 (c) 500-1000 (d) 0-1000

exhibits a significant change during the time 600-700, and this is likely the cause
in contributing the second well potential. Fig. 10c illustrates the phase plot of the
chaotic motion using the data from 500-1000. Using 200 data taken from 500-700
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Figure 11: Predicted phase space with input data taken from (a) 0-200 (b) 500-700

of the original time series as input, the predicted phase plot using 500 data shown in
Fig. 11b is in a reasonable agreement with that displayed in Fig. 10c. Even though
the preliminary results are encouraging, more detail investigations are needed for
cases with chaotic motions.

6 CONCLUSIONS

A data-driven method is developed to predict the steady state response for non-
linear aeroelastic systems. Utilizing the known transient data as input, the method
first identifies the specific type of nonlinearity using nonparametric statistical method.
Appropriate state-space models are then proposed to model aeroelastic systems
with continuous or piece-wise linear structural nonlinearity. The system parame-
ters are estimated by applying the Kalman filter and the expectation maximization
algorithm. Consequently, the nonlinear aeroelastic behavior is forecasted from the
reconstructed state-space models.

The approach has been tested on transient data generated from experiments
and numerical simulations. It has been demonstrated the nonparametric method
is capable of identifying the presence of the switching points. Hence, nonlinear-
ity associated with freeplay and hysteresis can be distinguished from a polynomial
spring. From the information of the structural nonlinearity, we proposed a switch-
ing linear state-space model or a nonlinear model for an aeroelastic system with
piece-wise linear or continuous structural nonlinearity. The proposed method has
been tested in which the nonlinear behaviors correspond to limit-cycle-oscillation,
fixed-point solution, divergent and chaotic motion.

The aeroelastic model discussed in this paper contains a nonlinearity arising
only from the structures. In future study, it will be of interest to test the method
when the aeroelastic data are resulted from system with both the aerodynamic non-
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linearity and the structural nonlinearity.
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